
Surviving Client/Server:
SQL Performance Tuning
by Steve Troxell

SQL was intended to make data
more accessible to less sophis-

ticated end users, thereby reliev-
ing some of the burden on the
programming staff. It accom-
plishes this by providing a simple,
concise syntax that allows the SQL
programmer to focus on defining
the data to retrieve without being
encumbered by the technique
used to access the data in the most
efficient manner. This is not to say
that performance is thrown by the
wayside in favor of simplicity.
Rather, most client/server SQL sys-
tems are smart enough to decide
for themselves how to access the
data most efficiently.

Query Optimizers
Many client/server SQL systems
rely on an internal query optimizer
that decides the best approach to
take in processing any given query.
The optimizer usually reorganizes
the query and reduces it to a com-
mon form, so that syntactically
different but functionally identical
queries are handled the same way.
It will make decisions such as
whether an index can be used to
sort the data or if it must use tem-
porary storage to perform the sort,
or whether a joined lookup table is
small enough to load into memory
or left on the disk.

Generally, however, the most
crucial task the optimizer performs
is deciding which, if any, index it
will use in locating the rows you are
looking for. It does this by examin-
ing the WHERE clause to determine
which columns are being used to
filter the result set and then check-
ing the available indexes to see
which one provides the best cover-
age for these columns. Some crude
optimizers simply examine the
fields in the WHERE clause in order
and choose the first indexed col-
umn they find. Smarter optimizers

make use of detailed statistics
about the distribution of values
across the table’s indexes and will
preferentially choose one index
over another based on the per-
ceived “cost” of performing the
query.

For example, take the query
shown in Figure 1 and assume an
index on both the Status and
ZipCode fields. Realistically, Status
would contain very few unique
values (Active, Inactive, Hold)
and is said to have low selectivity.
On the other hand, ZipCode would
probably have a large number of
unique values if the customer base
were spread out over a large
enough geographical area. ZipCode
would then be said to have high
selectivity. For this example, let’s
assume there are 7,500 customers
in total, of which 5,000 are active.
100 customers are in the 80920 zip
code, of which 87 are active.

Some optimizers will choose the
Status index to process this query
simply because it is the first field in
the WHERE clause for which an index
match was found. In this case, the
query would not be very efficient,
because there will be very many
more active customers than there
are customers in the 80920 zip
code. The server will examine all
5,000 active customers and return
the 87 that fall into the 80920 zip
code.

A smart optimizer (one that is
“cost-based”) will use distribution
statistics and recognize the selec-
tivity and distribution of values in
each of the indexes. It will judge
whether it has to read more rows
by following the Status column or
by following the ZipCode column,
and in this case it will correctly
decide that it is cheaper in terms of
I/O to follow the ZipCode column
because there should be fewer
rows to read to satisfy the query.

The server will examine all 100 of
the 80920 zip code customers and
return the 87 that are active.

To further illustrate how the
optimizer works, let’s assume we
were doing the same query as
shown in Figure 1, but we’re look-
ing for hold customers in the same
zip code. Let’s further assume that
out of the total 7,500 customers, 25
are on hold and of those 5 are in the
80920 zip code. Given these values,
the optimizer recognizes that it will
have to examine fewer rows by
following the Status index (25 hold
records versus 100 80920 records).
The same query may utilize differ-
ent indexes depending on the
values used to filter the records.

You may be thinking that the
overhead involved in all this deci-
sion-making about which indexes
to use degrades the overall per-
formance of the system and it
would be faster to just tell SQL how
to access the data instead of letting
it decide for itself. In practice, most
query optimizers can analyze a
great number of possible access
methods very quickly and gener-
ally do as well as or better than a
human programmer at deciding
the best access method (because
they have more information to
work with). The overhead of
the query optimizer should not
be a concern to client/server
developers.

What should be of concern, how-
ever, is that no two SQL server
products use exactly the same im-
plementation of query optimizer.
Some of the more sophisticated
ones are difficult to defeat since

SELECT * FROM Customers
 WHERE Status = ’A’ AND
 ZipCode = ’80920’

➤ Figure 1

June 1996 The Delphi Magazine 23

they will generally find the optimal
method of access for even the most
poorly conceived query. With
some of the less sophisticated
ones, you may have to “trick” the
optimizer by carefully arranging
your queries. A technique that may
improve performance on one sys-
tem won’t necessarily have the
same impact on another, simply
because the optimizer is playing
with a different rulebook.

Showing Execution Plans
Since it is important for us to know
how our query optimizer behaves,
we’re going to look at a few tech-
niques we can use to see what
decisions the optimizer is making.
Using Local Interbase Server, run
WISQL and connect to the
EMPLOYEE.GDB database (in file
\IBLOCAL\EXAMPLES\EMPLOYEE.GDB).

We’re going to run some queries
against the Employee table, so we’ll
want to see what indexes are avail-
able. From the menu, choose View
| Metadata Information and select
Index for the object Employee. The
output is shown in Figure 2.

Although the names are a bit
cryptic, we can see that there are
four indexes on this table: NAMEX,
RDB$FOREIGN8, RDB$FOREIGN9 and
RDB$PRIMARY7 each covering the
fields indicated. The last three in-
dexes are automatically generated
by Interbase as a result of defining
primary and foreign keys, which
accounts for their unusual and less
than helpful names.

Next, since Interbase uses a cost-
based optimizer, it would be nice
to get a feel for the distribution of
values across a few of these
indexes. The query shown in Figure
3 tells us that Emp_No is the most
selective (understandable since it
is a unique index) and that Dept_No
and Job_Code are somewhat less
selective. Note that this is a brute
force indication of the distribution
statistics for these indexes, the
actual statistics used by the
optimizer are more sophisticated.

Finally, we want to activate the
WISQL option that shows us what
the Interbase query optimizer is up
to. From the menu, choose Session
| Basic Settings and check Display
Query Plan. Now, whenever we run

a query, the output window shows
us what indexes the optimizer has
chosen. Look at the query shown in
Figure 4. Note the PLAN... line in
between the query and the results.
This refers to the execution plan
for the query and shows us that
Interbase decided to use index
RDB$FOREIGN8 (the Dept_No field) to
process this query.

Now look at the query shown in
Figure 5. In this case the term
NATURAL means that Interbase could
not make use of any indexes and
decided to scan the entire table to
process this query. Some SQL serv-
er products will elect to do a table

scan rather than use an index even
if a useful index is available. In
these cases, the optimizer has
determined (from the selectivity
statistics for the indexes) that
enough rows would be processed
by the query to make reading the
index pages and the data pages
more costly than if it just ignored
the index and read all the data
pages alone.

Figure 6 shows three related
queries and their execution plans
(without the results). As would be
expected of the first query, the
index for Emp_No is used. However,
the second query ignores the index

SHOW INDEX employee
NAMEX INDEX ON EMPLOYEE(LAST_NAME, FIRST_NAME)
RDB$FOREIGN8 INDEX ON EMPLOYEE(DEPT_NO)
RDB$FOREIGN9 INDEX ON EMPLOYEE(JOB_CODE, JOB_GRADE, JOB_COUNTRY)
RDB$PRIMARY7 UNIQUE INDEX ON EMPLOYEE(EMP_NO)

➤ Figure 2

SELECT COUNT(*) AS Total,
 COUNT(DISTINCT Emp_No) AS Emp_No,
 COUNT(DISTINCT Dept_No) AS Dept_No,
 COUNT(DISTINCT Job_Code) AS Job_Code
 FROM Employee

 TOTAL EMP_NO DEPT_NO JOB_CODE
=========== =========== =========== ===========
 42 42 19 13

➤ Figure 3

SELECT Emp_No, First_Name, Last_Name, Phone_Ext
 FROM Employee WHERE Dept_No = ’623’

PLAN (EMPLOYEE INDEX (RDB$FOREIGN8))

EMP_NO FIRST_NAME LAST_NAME PHONE_EXT
====== =============== ==================== =========
 15 Katherine Young 231
 29 Roger De Souza 288
 44 Leslie Phong 216
 114 Bill Parker 247
 136 Scott Johnson 265

➤ Figure 4

SELECT Emp_No, First_Name, Last_Name, Salary
 FROM Employee WHERE Salary > 500000

PLAN (EMPLOYEE NATURAL)

EMP_NO FIRST_NAME LAST_NAME SALARY
====== =============== ==================== ================
 110 Yuki Ichida 6000000.00
 118 Takashi Yamamoto 7480000.00
 121 Roberto Ferrari 99000000.00

➤ Figure 5

24 The Delphi Magazine Issue 10

and elects to do a table scan. Why?
Because a calculation is being per-
formed on the field side of the
expression and this automatically
negates the use of any index that
might be present on that field. To
get around this, arrange to have all
calculations done on the value side
of the expression as shown in the
last query in Figure 6.

The query shown in Figure 7
demonstrates that an index was
used even though no index exists
for the field we are filtering on (the
Salary field). Here we have an ORDER
BY clause to sort the result set.
Because the field we want to sort
on is indexed, the optimizer uses it
to traverse the table rather than
perform an independent sort
operation.

Finally, Figure 8 illustrates a
more complex query involving
multiple indexes. You’ll notice that
two indexes were used to access
the Employee table. Because more
than one index is available for the
filtering fields defined in the WHERE
clause, the optimizer makes use of
both indexes by finding the match-
ing rows for each case and reduc-

ing to the intersection of the two
sets. Generally speaking, a set of
pointers to all rows matching on
the first index (in this case,
RDB$PRIMARY5, the Emp_No field) is
created. Then a set of pointers to
all rows matching on the second
index (RDB$FOREIGN8, the Dept_No
field) is created. Finally, the two
sets are sorted and any duplicating
pointers are used to construct the
final result set. This can actually be
very fast and allows for greater
flexibility in defining indexes,
because you can typically define
more single-field indexes and
worry less about projecting which
fields would be needed in combina-
tion for multiple-field indexes.

Care And Feeding Of
Cost-Based Optimizers
Cost-based optimizers such as this
are the most commonly found type
in modern SQL databases and are
usually the most desirable.
However, they do require a bit of
attention to be effective.

The distribution statistics that
provide the optimizer with the
information it needs to make an

intelligent choice of indexes gener-
ally are not maintained automat-
ically. As data is added, deleted
and modified in a table, obviously
the distribution statistics become
less and less accurate. The op-
timizer may be misled into follow-
ing a particular index which may
actually result in poorer perform-
ance than some other data access
approach.

Why isn’t the system smart
enough to keep its own statistics
updated? The added overhead of
mandatory statistics compilation
on every data modification would
degrade overall performance. In
reality, the distribution statistics
do not need to be 100% accurate.
As you can see from Figure 3, the
selectivity of the indexes as a per-
centage of the total size of the table
can be ballpark figures and still
produce effective results.

The task of updating the distri-
bution statistics is handled
through the SET STATISTICS state-
ment (for Interbase; for Microsoft
SQL Server use UPDATE STATISTICS).
This command is used on each
index or table in the database need-
ing to be updated. Usually this task
is done by the database adminis-
trator with batch processes or, if
the server supports it, by schedul-
ing the tasks to be automatically
executed at the appropriate
intervals.

The frequency with which you
must update the distribution
statistics varies depending on the
activity in the table. In a predomi-
nantly read-only system, the
indexes need only be updated after
the initial population of data, or
after significant updates. A pre-
dominantly write-only data collec-
tion system with little or no
selective filtering of records may
not require any updating. A system
combining heavy reads and writes
requires more frequent updating
depending on how frequently and
significantly the distribution of
values in the indexes changes.

Of course it doesn’t hurt to up-
date the statistics as often as you
can. However, the update process
usually locks the table while it’s
working and large tables could take
quite some time to complete.

SELECT Emp_No, First_Name, Last_Name, Salary
 FROM Employee WHERE Emp_No > 50

PLAN (EMPLOYEE INDEX (RDB$PRIMARY7))

SELECT Emp_No, First_Name, Last_Name, Salary
 FROM Employee WHERE Emp_No + 10 > 50

PLAN (EMPLOYEE NATURAL)

SELECT Emp_No, First_Name, Last_Name, Salary
 FROM Employee WHERE Emp_No > 50 - 10

PLAN (EMPLOYEE INDEX (RDB$PRIMARY7))

➤ Figure 6

SELECT Emp_No, First_Name, Last_Name, Salary
 FROM Employee
 WHERE Dept_No = ’623’ and
 Emp_No > 10

PLAN (EMPLOYEE INDEX (RDB$PRIMARY7,RDB$FOREIGN8))

➤ Figure 8

SELECT * FROM Employee
 WHERE Salary > 50000
 ORDER BY Dept_No

PLAN (EMPLOYEE ORDER RDB$FOREIGN8)

➤ Figure 7

June 1996 The Delphi Magazine 25

Another issue involves the use of
stored procedures. Since stored
procedures are compiled queries,
the execution plan for the query is
determined at the time the stored
procedure is created. The op-
timizer will look at the distribution
statistics for the indexes available
at compile time in deciding what
the best execution plan will be. The
information available at this time
may not be a very good repre-
sentation of the production envi-
ronment. Tables may be sparsely
populated (if at all) and the distri-
bution statistics may lead the op-
timizer to elect to perform table
scans on everything. The stored
procedure will not be aware of any
new indexes added after it was cre-
ated nor will it change its execution
plan if the distribution statistics
change significantly (despite you
having performed SET STATISTICS
religiously).

There are many steps you can
take to address this problem. First,
when deploying a system it is a
good idea to run all stored proce-
dure scripts again after the data-
base has been initially populated
(and SET STATISTICS has been per-
formed) so that the optimizer has
another chance to devise a more
accurate execution plan. Also,
stored procedures could be re-
created on the same schedule as
the SET STATISTICS regimen. Or,
some servers allow the option of
forcing stored procedures to be re-
compiled every time they are exe-
cuted. This has the advantage of
relieving you of tending to the
problem but does have the disad-
vantage of negating some of the
performance benefits of stored
procedures.

An extra problem with stored
procedures is that they are much
more likely to use variables instead
of constants in their WHERE clauses
for filtering values. For example,
the stored procedure shown in
Figure 9 uses two variables to filter
for rows based on the Dept_No field
and the Job_Code field. Since the
desired values for the two fields are
not known when the stored proce-
dure is created (when the execu-
tion plan is formed), the optimizer
cannot make use of index statistics

to decide if Dept_No or Job_Code
would be the better index to follow.
It will use one of the indexes, but
the one it chooses may not be the
optimal one for any particular com-
bination of values.

This problem generally does not
occur with parameterized queries
passed through from a Delphi ap-
plication (see TTable vs TQuery, in
the January 1996 issue). The pa-
rameter values are bound to the
query when it is sent to the server
and the optimizer can make use of
those values when deciding how to
form the execution plan. However,
if you are explicitly using the
Prepare/Unprepare methods to im-
prove the performance of a series
of calls to the same query, the op-
timizer will formulate an execution
plan based on the first set of values
it receives. It uses the same plan for
all future executions of the same
query (until the Unprepare method
is called).

Indexes
Useful indexes are crucial to good
performance in any database sys-
tem, but because the optimizer is
normally selecting indexes outside
of your direct control, you may
need to be a bit more careful in
deciding what indexes to provide.
You should analyze the WHERE
clauses in your system to deter-
mine what should be indexed.
Obviously, fields most commonly
used for filtering data are candi-
dates for indexing. The more
indexes the optimizer has to select
from, the more possibilities there
are for it to pick an optimal execu-
tion plan for a variety of queries.

Decision support systems where
data is churned through many dif-
ferent ways will benefit from hav-
ing several indexes. On the other
hand, a data collection system with
many writes will usually be slowed

down by the additional overhead
of maintaining several indexes
when the key fields change. When
updating records, you may have to
compromise when deciding to add
additional indexes. Since the re-
cords to update have to be located
first, there may be improved per-
formance with additional indexes
that may balance out the added
overhead of index maintenance.

In SQL databases, indexes can be
added or dropped independently
of the table they are attached to. So
you can easily experiment with
various indexing strategies to see
what impact a particular approach
has on the system.

Clustered Indexes
Many SQL databases offer clus-
tered indexes in which the data is
physically stored in the order indi-
cated by the index. This can be
very helpful in cases where data is
generally accessed in groups, but
doesn’t provide much benefit if
rows are retrieved singly. For ex-
ample, in an order entry system
there may be a “master” table con-
taining one row per order and a
“detail” table containing one row
per item in the order (a one-to-
many relationship). The detail
rows are keyed by the order num-
ber and a line number (1 through n
for each item in the order).

If the detail table used a nonclus-
tered index, then the detail rows
could potentially be spread across
several data pages, requiring addi-
tional I/O to gather all the detail
rows for any particular order. In
any event, the server reads the in-
dex to find each detail row and then
locates the row in the data pages.
If a clustered index is used, then all
the detail rows are guaranteed to
be consecutive within the table.
The server can use the index to
locate the first detail row and a

CREATE PROCEDURE CountEmployees(iDept_No char(3), iJob_Code varchar(5))
 RETURNS (oCount smallint)
AS
BEGIN
 SELECT COUNT(*) FROM Employee
 WHERE Dept_No = :iDept_No AND Job_Code = :iJob_Code
 INTO :oCount;
END

➤ Figure 9

26 The Delphi Magazine Issue 10

sequential table scan to gather the
remaining rows. In contrast, if the
master table had a clustered index
on the order number, there won’t
be much additional benefit in
retrieving a single order.

Clustered indexes may hinder
write performance somewhat, but
generally not as much as you might
expect. If a new record is inserted
in the middle of the table, the
affected data page will be split in
two without impacting the physical
placement of the rest of the table.
If frequent, this may result in a high
degree of table fragmentation.

When deciding whether or not to
use a clustered index, be very care-
ful in your analysis of what the
heaviest access method may be.
You may think that a table of one
row per order may not benefit from
a clustered index. But if there is a
reporting requirement for rapid re-
trieval of all orders handled by a
particular user, then a clustered
index on user ID may be appropri-
ate. Good project analysis takes
into consideration all aspects of
the system (or as many as can be
defined) when determining the
“best” technique.

Conclusion
Careful indexing is one of the most
important aspects of performance
tuning for SQL databases. Some of
the most useful information I’ve
found on this topic comes from Joe
Celko’s book SQL for Smarties:
Advanced SQL Programming
(Morgan Kaufmann Publishers,
ISBN 1-55860-323-9), a must-have
for serious SQL programmers.
We’ll return to performance en-
hancement, but proper indexing
and understanding the access
methods of your queries should
give you the most dramatic results.

Steve Troxell is a Software
Engineer with TurboPower
Software where he is developing
Delphi Client/Server applications
using InterBase and Microsoft SQL
Server for parent company Casino
Data Systems. Steve can be
reached on the internet at
stevet@tpower.com and also on
CompuServe at 74071,2207

June 1996 The Delphi Magazine 27

	Query Optimisers
	Showing Execution Plans
	Care and Feeding of Cost-Based Optimizers
	Indexes
	Clustered Indexes
	Conclusion

